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Stretched-Exponential Decay Laws of 
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We calculate a correlation function of a dipole which flips upon contact with 
one of the defects making generally non-Gaussian diffusions. Other than the 
memory effect in the fractal random walk model, the non-Gaussian property 
can be an origin of the stretched-exponential law of the correlation function. 
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1. I N T R O D U C T I O N  

Relaxation phenomena in diverse condensed-matter systems have a com- 
mon feature/1'2) Correlation functions obey a stretched-exponential law 

q~(t)=exp[-(t/to)~], 0 < f l <  1 (1.1) 

for sufficiently large t. 
One of the basic pictures (for others, see refs. 1-3) is that relaxation 

of a certain substance is triggered by contacts with other migrating 
substances. In the simplest system composed of a fixed dipole and many 
noninteracting defects making simple random walks, first introduced by 
Glarum (4) and later elaborated by Bordewijk, (5) the dipole makes an 
instantaneous flip upon contact with one of the defects. This model, here- 
after referred as the defect diffusion (DD) model, provides a prototype of 
not only relaxation phenomena, but also the kinetics of diffusion-limited 
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chemical reactions. (6) Furthermore, the model has many possibilities of 
extension (see refs. 7 and 8 for some of these4). 

In n-dimensional space the DD model has (9) 

S( t )~ /log t n = 2  (1.2) 

n = 3  

as exponential parts in (1.1). 
A class, called fractal random walk models, (l~ was shown by 

Shlesinger and Montroll (12~'5 to cover the stretched-exponential law (1.1). 
Assuming that the distribution of the waiting time ~ of the random walkers 

=defects) obeys a power law 

P ( r  -~, 0 < ~ < 1  (1.3) 

instead of an exponential law of the simple random walk, they obtained 

f t ~/2 n = 1 

S ( t )  ~ ~ ( t  ~ n = 3 
(1.4) 

Bendler and Shlesinger (15~ further discussed the origin of (1.3) as well as the 
temperature dependence of the constant to in (1.1). 

From a mathematical point of view, the fractal random walk models 
take into account non-Markovian effects. In view of (1.2), on the other 
hand, the DD model, not directly included in the fractal random walk 
models, partly covers the stretched-exponential law. In this paper we will 
present a class of DD models with stretched-exponential behavior, which is 
still Markovian but not necessarily Gaussian. 

The present work is motivated by recent studies on the origin of the 
long-time tail in stochastic processes. The well-known Alder-Wainright 
effect of random motion of a hard sphere in viscous fluid, where the 
velocity correlation function of the sphere decays as t -3/2, is a direct conse- 
quence of the non-Markovian effect in the so-called Stokes-Boussinesq- 
Langevin equation (see ref. 16 for review). Okabe ~7) clarified this structure 
generally in his study of the KMO-Langevin equation (see ref. 18 for 
further development). On the other hand, a non-Gaussian property 
likewise gives rise to the long-time-tail behavior. In statistical physics 
many examples have been found exhibiting power-law decays of moment 

4 In particular, see ref. 7 for results when a multiplicity of relaxing substances is taken into 
account; introduction of the dynamics during contacts was done in ref. 8. 

5 See also similar studies on electron scavenging in refs. 13 and 14. 
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functions, (19) which has inspired a general treatment in the framework of 
diffusion processes by Minami et al., ~2~ Ogura and Tomisaki, (21) and 
Tomisaki. (22) 

This paper is constituted as follows. We begin Section 2 with a con- 
tinuous version of a general DD model, and show that the problem is 
reduced to an evaluation of certain integral involving one-dimensional dif- 
fusion processes. We then sketch an asymptotics of the integral which leads 
to the stretched exponential decay laws. Section 3 is devoted to a proof of 
the asymptotics. Examples are given in Section 4. Bearing in mind an 
application to diffusion phenomena in the presence of dislocations and dis- 
clinations, 6 we discuss a simplest example of a DD model in Riemannian 
space. Section 5 is a summary, with a mention of a relation to other power 
laws in one-dimensional diffusion processes, decay forms of moment 
functions, (2~ and size distributions of fractured area. (26~ 

2. D E F E C T  D I F F U S I O N  M O D E L S  

We study a continuous version of the Defect Diffusion (DD) model, 
workinig on n-dimensional Euclidean space instead of an n-dimensional 
lattice. Consider a system of a frozen-in dipole at the origin and N defects 
which, following a diffusion law, move independently outside of a ball 
Uo = {x~R~: Ix] ~<ro}. Suppose that the dipole relaxes from the initial 
value M(0) to 0 when one of the defects hits Uo for the first time. Then the 
correlation function ~b(t)= (M( t )M(O) ) /M(O)  2 is given by the probability 
that none of the N defects hits U0 up to time t, 

q~(t)=P(%>t, i= 1, 2,..., N) (2.1) 

Here ~i is the time that the ith defect hits Uo for the first time (put oo if 
it never hits). By the assumption of mutual independence of the N defects 

N 
0(t)= ]-I P(~,> t) 

i = 1  

Let V be a domain containing Uo. Assuming that the initial distribution of 
the defects is uniform over the region V\Uo (=  {x~ V: x r  Uo}), we can 
transform ~b(t) as 

N 

~I ~ P('ci > t[ Xi(O) = X) P (Xi (O)  ~ d x )  

/ , i  

~ ( t ) =  = ,  v ~ 0  
i= 

-- __H 1 f dxP(Ti~>tlXi(Ol:x) (2.2) 
i=!  Ig\Uo[ V\UO 

6 Closely related quantum mechanical problems were discussed in refs. 23-25. 
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where [V\Uot is the volume of V\U o, and Xi(t) is the position of the ith 
defect at time t. Since all ri have the same distribution, 

1 d x  P('c 1 ~< t[ X l ( O )  = x 
0~(t) = 1 f V \ U o f  v~ .o  

In the thermodynamic limit V.TR n, NIl VI =p (fixed), the above integral 
converges to 

exp [ -P  fRn\~odx P(~l <~ t[Xl(O)=x)l 

which is further transformed to 

I Plzn/2 fr~dlxinP(~<~tlXl(O)=x)l 
exp F(n/2+l) o 

under the assumption of spherical symmetry that P( , l~<t lX~(O)=x)  
depends solely on Ixl. Let ~ be a diffusion process on [0, ~ )  defined by 

~(t )  = IXl ( t ) l  - ro (2 .3)  

and let r denote its first hitting time of the origin. Then the correlation 
function is finally written as 

[ p~/2 fo~d(x+ro)~p~(~<~t) 1 (2.4) ~b(t) = exp f'(n/2+ 1) 

so that our problem is to evaluate the integral 

f? d(x + ro)" P~(r <. t) (2.5) 

Here P~(z ~< t) stands for P(r ~< t[ 3(0) = x). 
From a viewpoint of applications in physics, ~ may be assumed to be 

determined by It6 type stochastic differential equations 

d~(t) = b(~(t)) dt + a(~(t)) dw(t) (2.6) 

with suitable functions a(x) and b(x) and a Brownian motion w(t). 
Probability density p(t, x) that ~(t) is found around x, i.e., p(t, x)-- 
P(r ~ dx)/dx follows a Fokker-Planck equation 

otP(t,x)=~x(-b(x)p(t,x))+~x2(a(x)2p(t,x)) (2.7) 
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(See, for example, ref. 34 for basics of stochastic calculus.) When X~(t) is 
an n-dimensional Brownian motion, d(t) becomes the so-called Bessel 
process (shifted by - r  0 as defined in (2.3)), and a ( x ) =  1 and b (x )=  
�89 - 1 ) / ( x -  to). 

For the sake of mathematical convenience, we introduce two functions 
s(x) and m(x) which are defined by 

s(x) = fx  du exp[ - F(u)],  

where 

F(u) = f" 

f 
X 

m(x) = du2a(u) -2 exp[F(u)]  (2.8) 

2b(v) a(v)-2 dv (2.9) 

With these functions Kolmogorov's backward operator (a2/2)d2/ 
dx2+ bd/dx is expressed by d/dmd/ds. In other words, the process ~ is 
completely characterized by the functions s and m. The function s(x) and 
the measure dm(x) are called the canonical scale and the speed measure, 
respectively. 

For  one-dimensional Brownian motion [ b ( x ) =  0, a(x)= 1], s(x)= x 
and m(x) = 2x. So we would like to know the asymptotics of (2.5) when s 
and m are generally nonlinear functions. Roughly speaking, if s(x) and 
m(x) grow in a power order 

s ( x )  ~ x ~, 

as x ~ o% then 

r n ( x ) ~ x  ~ ( 2 >0 ,  kL>0) (2.10) 

the integral (2.5)~ t ~/(; + ~) (2.11) 

as t---, 0% i.e., we obtain the stretched exponential decay law with an 
exponent/~ = n/(2 + t~). We will give a proof in the next section. 

Let us see intuitively what is meant by the condition (2.10). m'(x) 
agrees with a formal stationary solution Pst(X) of the Fokker-Planck equa- 
tion (2.7). The condition m ( x ) ~  x ~ means that pst(x) is unnormalizable. So 
the defects, though initially uniformly distributed, have a tendency to 
diffuse to infinity. On the other hand, the condition s ( x )~  x ~ means that 
the defects are recurrent (if they are reflected upon reaching the ball Uo), 
that is, the defects move about in a sufficiently dense manner. 

The exponent in (2.11) can become greater than 1. So, let us next see 
how this is possible. It is known that the process ~(t) is given by modifying 
a Brownian motion B(t) as 

~(t) = s(B(tp(t))) + ~(0) (2.12) 
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where r  is a random function depending on {B(s)}0~<~ through s and 
m. This function r effectively changes diffusion constants from 1 
[=(B(t)2) / t]  to (r which, together with the scale s(x), can 
accelerate the relaxation process. See Example 2 in Section 4 for further 
discussion on this point. 

3. A S Y M P T O T I C S  OF THE INTEGRAL (2.5) 

Let ~ be a conservative diffusion process on [0, or) having a scale s 
and a speed measure dm with s u p p [ d m ] = ( O ,  oo). We assume that the 
origin is a regular boundary,  so that we can put s(O)= m ( O ) = 0  without 
loss of generality, and that oo is a natural boundary. See ref. 26 for an 
expression of the boundary condition in terms of s and m. We further 
assume that s and m have asymptotic forms 

s(x) ~ x~K(x)  
(3.1) 

m(x) ~ xUL(x) 

as x ~ oo. Here 2, # are positive constants, and functions K and L are 
slowly varying at Qo, i.e., 

lim K(cx)/K(x)= lim L(cx)/L(x)= 1 (3.2) 
X --~ o o  ) c ~ o o  

for any c > 0. 
Under  the above assumptions for ~ we have the following theorem. 

T h o o r e m .  

Integral (2 .5)~ C~,~,,[s-l(k(t))] ~ as t--* oo (3.3) 

Here k is the inverse ofx~-*xm(s l(x)), i.e., k(t)m(s l(k(t)))=t, and 

/ ( ;  + ~)2V/" +,~ r((2 + n)/(2 + ~)) 
C~ (3.4) 

"~ = ~ ~ )" r ( v ( 2  + ~)) 

Remark 1. Combining the theorem with (2.4), we see that the 
logarithm of the correlation function ~b asymptotically satisfies " 

log r  ~ r(n/2 + 1) 

Remark 2. In (3.3), 

r s - , (~ ( t ) ) ] - -  t ./~+.~ L l ( t )  
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with a certain function L 1 slowly varying at oo. When K and L are 
constants, so is L1, which means the stretched-exponential law for ~b. 

Proof of  the Theorem. Consider a differential equation 

d d + 
- -  - -  g ( x ;  ~) = ~g(x;  ~), ~ > 0 (3.5) 
dm ds 

on [0, oo). Here d+/ds is one-sided scale derivative defined by 

d + f ( x  + h) - f ( x )  
~s f ( X  ) = lim 

h~o s(x + h ) - s ( x )  

Equation (3.5) has a unique solution g2 which is positive and decreasing as 
well as satisfying the initial condition g2(0; :~) = 1. (27) On the one hand, g2 
is represented as [ref. 28, Section 4.6, p. 129, Eq. (3b)] 

g2(x; c~) = E x [ e X p ( - ~ r ) ]  (3.6) 

by using the probabilistic quantity z, the time that ~ hits the origin for the 
first time. On the other hand, it is represented by a Laplace transform of 
a nonnegative quantity qo as [ref. 20, (3.20)] 

fo g2(x; c~) = e-~tqo(t, s(x)) dt (3.7) 

Here q0 is given as a limit 

qo( t, y ) =  lira ~?p( t, x, y )fi?x (3.8) 
x ,L o 

where p(t, x, y) is a fundamental solution of the operator •/Ot- d/drhd+/dx 
with respect to the measure drh defined by 

rh(x)=m(s l(x)) (3.9) 

From (3.6) and (3.7) we have dPx(r <~ t)= qo(t, s(x))dt, so that 

fo integral (2.5) = d(x + ro) n q0(u, s(x)) du (3.10) 

Next we take a constant c > 0 and make a transformation of the measure 
rh -~ rh ~c) 

rh'~(x ) = rh( cx )/r~( c ) (3.11) 
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By q(o~)(t, y) we denote qo(t, y) when using rh (~) instead of th. Then we have 

\c~(c) 
Using these relations, we can rewrite the right-hand side of (3.10) (-=I) as 

1 ~ q~,) u s ) 
I = c~(c) d(x + ro)" -~c ) '  du 

= I ~ d(s ~ (cx )+  r0)" I ~/~'~c> q~)(u, x) du 
Jo Jo 

We choose the constant c so that t=rh(c)c, i.e., c=k(t), and get 

~,/s l(cx)+ro)~ 
I=[s  l(c)]nfo a L ~ q(oC)(bl, x) du 

Since m is monotonically increasing, t -~ oo implies c ~ 0% so that we only 
have to study the asymptotics of I as c ~ oo. As will be proved later, 

oo 1 

lim I/Is l(c)]n ~- fO dXn/A fo q*(u, X) du (3.13) 

Here q* denotes q0 when we put rh(x)=x ''/~ [=limc~oo ~(C)(x)], and is 
explicitly written as 

q*(u,x)= ~-~+ 1)2) F(1/(7+l))u l+~/('+~)exp (7--~)-~UJ 
(3.14) 

where 7 =#/2.  Using (3.13) and (3.14), we carry out the integration to 
obtain limc~ ~ I/[s-l(c)] "= C~.,~,,, which establishes the relation (3.3) 

The relation (3.13) will be proved by using a result by Ogura and 
Tomisaki (ref. 21, Lemma 4.1) concerning convergence of q(f) to q*. 

Lemma 1. 

(a) 

(b) 

For u > 0, t /> 0, r ~< 1, we have: 

lira q~oC)(t, y)/y=q*(t,y)/y uniformly in (t, y )~  [u, oo)x (0, ~] 
c ~ o o  

lim exp(_y~+3) q~)(t, y ) =  e x p ( - y  ~+3) q~(t, y) 
c ~ o o  

uniformly in (t, y) ~ [u, oo) x [q, oo), where 7 is the constant in 
(3.14) 
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(c) 1 (c) lira sup ~oqo (t, y) dt =0 
u <.~ooo<~y~, ~oqo(t, y) dt 

(d) sup try I --r[q(oC)(t, y) V q~(t, y) ]  < OV 
c ~ c o , O < t < . u , y > ~ l  

for some c o = Co(U, q, r) 

We further need the following simple 1emma. 

I . e m m a  2. Let D be an interval in R ~ with endpoints a and b 
(a < b). Let F (e) (c > 0) be a family of functions which are continuous and 
increasing in D. We suppose F ~) converges as c ~ ~ to a function F in D. 

(a) If D is bounded and 

sup{F(~)(b)-  F(~)(a)} < co (3.15) 
c > 0  

then 

fD f(x) dF<C)(x)= j; f(x) dF(x) (3.16) J i~moo 

for any function f which is uniformly continunous and bounded on D. 

(b) Suppose there exists an increasing sequence of bounded intervals 
D~ with endpoints a~ and b~ such that U~ D~ = D, 

sup {F(C)(bi) - F(C)(ai) } < ov (3.17) 
c > 0  

and 

r 

lim suP t  f ( x )  dF(C)(x) = 0 (3.18) 
i ~ o o  c > 0  J D \ D i  

for some uniformly continuous and bounded f on Di. Then the relation 
(3.16) holds for the same f as in (3.18). 

Proof of Lemma 2(0). For  any e > 0, we can find 6 > 0 and points 
X I , . . . , X  m in D with [x i - x i+ l l<6  such that I f ( x ) - f ( x ~ ) ] < e  if 
x~<x<~x~+l. Then we have 

; z f ( x )  dF(C)(x) - ~ f(x~){F(C)(xi+l) - FtC)(xt) } < s {gtc)(b) - F(C)(a) } s u p  

i c 

and a similar inequality for the difference between ~Df(X)dF(x) and 
its approximate Riemannian sum Y~if(xi){F(x~+~)-F(x~)}. On the 
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other hand, the absolute value of the difference of the two approximate 
Riemannian sums can be made smaller than e by taking c sufficiently large. 

(b) In an inequality 

f. f(x) dF'C)(x)- fo f(x) dF(x) 

+ 

we can find Di such that the second and third terms on the right-hand side 
are smaller than arbitrary 5. With this Di, the first term can be made 
smaller than e by (a) of this temma if we take c sufficiently large. 

Now let us continue the proof of the theorem. We first divide 
I/[s l(c)]n into two parts: 

J' = fo dv(<)(Y) dt q~)(t, y) 
+ 

J2 ~ fl ~ dv(C)(Y)fo dt q~')(t, y) 

(3.19) 

where 

v(c)(O,x]={S l(cx)+ro~ { ro ~ 
\ t] t S 1(C)] 

(3.20) 

Let us begin with an estimation of the integral J~. Take e > 0 arbitrarily. 
By (c) of Lemma 1, there exists Cl = Cl(e) such that if c > Cl, then 

fo q~'(t, y) d t -  fo q~(t, y) dt <e fo q*(t, y) dt (3.21) 

holds uniformly in y ~ (0, 1 ]. 
On the other hand, v (C) is a measure on (0,1], and satisfies the proper- 

ties supc>oV(C)(0,1]<oo and v(c)(O,'x]~v*(O,x] (=_x "/;) as c--*ov 
for x ~ ( 0 , 1 ] .  Furthermore,  ~dtq*(t,y) [=r(1/(7+l))-lr(1/(~+l), 
7y ~+ 1/( 7 + 1) 2) i fy  > 0] is uniformly continuous and bounded on (0, 1]. So 
by Lemma 2(a) we can find c2 = c2(e) such that for e > C2 

fO~ dvr dtq*(t,y) - dv*(y) dtq*(t,y) <~ (3.22) 
+ O+ 
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F rom (3.21) and (3.22) we have, for c > C 1 V C2,  

- dv*(y) dt q~(t, y) 
+ 

<~ fo+ dv(C'(Y) f j  q~') d t -  fo q~ dt 

+ dv(C)(y) q* d t -  dv*(y) jo q~ 
+ + 

<~ e dv(~)(y) q~ dt + 1 <~ M~ e 
+ 

with a certain constant  M1 being independent  of c, which guarantees 

1 1 

lim J ~ = ; 0  dv*(x) fo dtq*(t, y) (3.23) 

Let us proceed to an estimation of 3"2. Fix r < 1 -  n/2 and take e > 0 
arbitrarily. By (b) and (d) of Lemma 1, we can find Cz = c3(g, r, t) and 
M2 = M2(r, t) such that  if c >i c3, 

q~o~)(t, y)<~ [q*(t, y ) + g e x p ( y + 3 ) ]  A M2t-~y ~ 1 

holds for y >~ 1, so that  the integral J3 = S~ v q~)(t, y) dr satisfies 

l i m  J 3 ~ < c l i m  ~ [-qo~(t, y ) + e e x p ( y ~ + 3 ) ]  /x M 2 t - ~ j  X dv(C)(y) (3.24) 
c ~ o O  " 1 

On the r ight-hand side, it is not  difficult to check the conditions of 
Lemma 2(b), where D = [1, ~ ) ,  Di = [1, i), and F(C)(x) = v(C)(1, x ] .  The 
condit ion (3.17) is satisfied since 

lira v(~)(1, x] = x n/x- 1 (3.25) 
c ~ o o  

By integration by parts, we have 

f7 yr ldv(C)(y)=_i,-lv(C.)(1, i ] _ ( r _ l  ) yr-2v(C)(1, y]dy  

Both terms in the r ight-hand side tend to 0 uniformly in c as i ~ oo because 
of (3.20) and the inequality r < 1 - n / 2 ,  which shows the condit ion (3.18) is 
satisfied. 
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Now we can apply Lemma 2(b) to (3.24), and see that the right-hand 
side of (3.24) becomes 

foo [q*(t, y)+eexp(y~+3)] /x Mzt ry~-l dv,(y) 
1 

where v*(0, x]  = x n/~ as before. Since ~ y r -  1 dv*(y) < oe, we have in the 
limit of e ~ 0, 

lim J3~<~ ~176 q*(t, y)/~ M2t-ry r-~ dv*(y) 
r o:~ ~1  

<~ q*(t, y) dv*(y) (3.26) 
1 

by the dominated convergence theorem. 
On the other hand, by (a) of Lemma 1, for arbitrarily fixed q > 1, 

there exists c4 = c4(e, tl, t) such that if c > c4, 

q~oC~(t, y) >>. (1 - ~) qo*(t, y) 

holds for y e  [1, q]. So we have by Lemma 2(a) 

lim "]3 ) li__m_m (1 - e) q*(t, y) dv(C~(y) 
c~o3  C ~  1 

J; =(1  - e )  q*(t, y)dv*(y) 

Since e and ~ are arbitrary, we have 

li_m_ J3 >~ q*(t, y) dv*(y) (3.27) 
c~cO 

which together with (3.26) shows that 

J3= f~  q~(t, y)dv*(y) (3.28) cli n]oo 

We fix r < 1 - n/2 and apply (d) of Lemma 1. We can then find c5 = cs(r) 
and M3 = M3(r) such that 

~ q(~ Y) dv(~(Y) <~ M3 1 t - r y r -  1 dv(C)(y) 
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for t~(0,  1]. The last expression is dominated by M4(r)t -r, which is 
integrable in t on (0, 1 ]. Hence, using the dominated convergence theorem 
and (3.28), we have 

limoo J 2  = ,,limoo f~ dt J3 

=;~ dt fl~q*(t, y) dv*(y) (3.29) 

The relations (3.23) and (3.29) complete the proof of the theorem. 

4. EXAMPLES 

Examples are named after the radial process of the particle 1, i.e., 
R ( t ) =  IX~(t)l, and specified by the corresponding backward operators 

= d/dfit d+/dg. When A, as is usual, is given formally as 

d 1~ d 2 
= + 5 a (x )  2 Z x  2 

and fit are expressed by 

g(x) = fx du exp[ - F(u)],  

where 

(4.1) 

fit(x) = f x du 2a(u)-2 exp[F(u)]  (4.2) 

F(u) = f"  2b(v) a(v) -2 dv (4.3) 

Lower bounds of the above integrals are suitably chosen. A change of them 
only gives rise to a linear transformation of s and fit as ~ C1~+ C2, 
f i t~C~f i t+C3 ,  which gives the same A. Since ~ is related to R(t) 
[-=lXl(t) l ]  by (2.3), the scale s and the speed measure m of ~ [with 
s(0) = m(0) = 0] are given by s(x) = s + a) - g(a), m(x) = 
fit(x + a) - fit(a). 

Example 1 (n-Dimensional Bessel process). This is the radius of an 
n-dimensional Brownian motion (Bl(t),..., Bn(t)); R(t)= [Z7=1 Bi(t) 211/2. 
As is well known, a ( x ) =  1, b ( x ) =  (n - 1)/2x. When n = 1 

g(x) = x, fit(x) = 2x (4.4) 

822/66/1-2-37 
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so that  put t ing n = 1, 2 = 1, K(x) - 1, L(x)  = 2 in the theorem,  we have 

~b(t) = exp [  - 2( 2/Tz ) V2 pt ~/2 ] (4.5) 

the s t re tched-exponent ia l  law (1.1) with/~ = 1/2. 
When  n t> 2, 

s = log x, fit(x) = x 2 - 1, n = 2 
(4.6) 

g(x) = (x 2-~ - 1)/(2 - n), fit(x) = 2(x" - 1)/n, n >~ 3 

These cases are not  covered by the theorem and require more  e laborate  
t reatment .  We will discuss it in a separate  paper,  where it is shown that  

~25'  f 2 t / l o g t  n = 2  
In tegral t"  ) ~ [ n ( n - - 2 ) / 2 a Z - n ] t  n>~3 (4.7) 

agreeing with expression (1.2) of the discrete D D  model.  

Example  2 (Self-similar diffusion process). The  radial process R(t) 
is said to be self-similar with pa rame te r  H >  0 if R(ct) is equivalent  to 
e~lR(t) for any c > 0. It  is character ized by ~26> 

~(x)=clxl-1/H, a(x)=c2x ~ 1/~2m (c~ >0, c2>0) (4.8) 

or, by an appl icat ion of (4.2) and (4.3), 

s = ( x ) -  1)/,~, f i t ( x ) -  2 ( x " -  1)/#c 2 (4.9) 

Here  the paramete rs  2 and # are given by 

2= 1 -  2cl/c22, # =  - 2 +  1/H (4.10) 

We can apply  the theorem as long as 2 and # are positive, i.e., 

1 - 1 / H  < 2 c l / c  2 < 1 (4.11 ) 

and get the s t re tched-exponent ia l  law with an exponent  nil. 
The exponent  nH can become greater  than  1. This seemingly 

contradic ts  (4.7) if we recall that  the Bessel processes are self-similar with 
H =  1/2, Cl = ( n -  1)/2, and c 2 =  1. But when n~>2 the inequali ty (4.11) is 
violated. In  other  words,  the restriction (4.1t)  implicitly affects the 
asymptot ics  of  (2.5). 

It  will be instructive to see how we get decay laws faster than  exponen-  
tial functions. It  is known  that  one-dimensional  diffusion processes are 
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obtained by making nonlinear transformations and time changes to a 
Brownian motion B; ~(t) is expressed as 

~(t) = s(B(O(t)) + 4(0) (4.12) 

where O(t) is a random function whose inverse is given by 

- l ( t )  = ds rh'(B(s) + 4(0)) (4.13) 

with rh(x)=m(s  1(x)).(32) Let us consider a defect initially ~ ( 0 ) = x ~  
which will hit the dipole around time t if ~ is simply a Brownian motion. 
Using (4.9), we have 

@--i( / )  = C 3 ds [ ~ ' ~ -  ~(S)  -~ 1/•] #/) '- 1 

On the average we may set B(s)~- - x / s ,  so that 

O-'(t) c3 fo as (, /7- 
~- C4/.1/(22H) 

Here we have used 2 +/~ = 1/H. Hence we have from (4,12) 

~(t) ~- s(B(cstZ;n)) + 4(0) (4.14) 

This approximate expression shows that the clock is modified from t to 
t 2~/, and the space is scaled from x to x~; correspondingly, the time 
dependence of the relaxation function is changed as x/t---+ (x/~)z~H= 
t ~~- ,  t~~I/~= t H. This agrees with the index of the stretched-exponential 
decay law with n = 1. 

The function q)(t) effectively changes diffusion constants from 1 
[ =  (B( t )2) / t ]  to (~k(t)2)/t. Another mechanism has been considered in 
the continuous-time random walk model with a coupled spatial-temporal 
memoryJ 33) Suppose, for example, that the probability density of a jump 
occurring at time t behaves as t -1-~ (0< e < 1); and that the conditional 
probability density of the jump going distance l behaves as 
(2~t ~) I/2exp(-12/2t ~) ( f l> l ) .  Then the average of the square of the 
distance behaves like t ~. In the limit of continuous space these examples 
will converge to non-Markovian processes whose sample paths include 
jumps. The processes discussed in the present paper are Markovian and 
their sample paths are continuous. The change of the diffusion constants is 
caused by nonlinearity of the functions m and s. 

822/66/1-2-37" 
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The term d(x+a)  ~ in (2.5) formally survives to give an n/(2+/~) 
dependence on the dimension number n. The proof of the Theorem in 
Section 3 shows that the survival is guaranteed by the assumption 2 > 0, 
/~ > 0. The first one means ~(t) is recurrent (when the defects are reflected 
upon hitting the dipole), that is, it reaches neighborhoods of any point 
within finite time. The process does not have a stationary probability 
distribution function, because a formal stationary density function m'(x) of 
the Fokker-Planck equation is unnormalizable. Both conditions mean that 
the defects move densely around regions far away from the origin. 

The Brownian motion in three dimension lacks the recurrence 
property. The two-dimensional case is critical; recurrent though 2 = 0, and 
has no stationary distribution. The term 1/log t in (4.7) may be regarded 
as a correction. 

E x a m p l e  3 (General case). Let us rewrite (4.1) as 

a2(X)5 e F(~)dx- __d ep(X ) ddx (4.15) ~= 

where F(x) is defined by (4.3). If ~ ( x ) ~ x  pl, e T(X)~xP2 as x--+ oo, then 
by (4.2) 

1 2 
s(x) ~ - -  x p~+ 1, re(x) xZo~-p~+l as x -* ao 

p2+  1 2pl--jo2-}- 1 
(4.16) 

as far as p 2 + l > 0  and 2 p l - p z + l > 0 .  Hence the exponent /~ in (1.1) 
[ = n / ( 2 + # )  by Remark2 of the theorem] becomes n/(2pl+2),  being 
independent of P2. 

E x a m p l e  4 (Riemannian space). A modification of the discussion in 
Sections 2 and 3 gives us a DD model in Riemannian space. We sketch it 
using a simple example. Let 0 be a nonnegative C ~ function on [0, oo) 
satisfying 0(0) = 0, O'(r) > 0 (r > 0), and 

O(r) = r v, r/> 1 (4.17) 

In (n + 1) (i> 3)-dimensional Euclidean space E n+l we consider a surface 
M n 

x ~  = r  ( 4 . 1 8 )  

where 

r = (xi) 2 (4.19) 
i 1 
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which is generated by rotating the curve x ~ + ~ = q)(x 1), 
x2=  x 3 . . . . .  x " =  0 around the x "+ ~ axis. We suppose M ~ is endowed 
with a metric induced by the Euclidean metric of E" + 1. Using the polar 
coordinate 0 l, 02 ..... 0 ~- 1, 0 ~ = r of x ~, xa,..., x", the metric is written as 

g~dOi dOJ= E1 + O'(r) 2] dr2 + r 2 dO 2 (4.20) 
i , j ~ l  

Here dO 2 is the canonical metric on the unit sphere S n 1. The expression 
(4.20) is readily derived by substituting (4.18) into the relation 
Zi~,j= l g~/ dO~ d O j -  x ' '  + /--.~= l ( dx~) 2 and using Y~=I ( dx~)2 = drZ + r2 dO 2. When 
the metric is given by (4.20), the backward operator _~ of the radial process 
of the Brownian motion on M" is given by the radial part of �89 i.e., 

1 d r "-1 d 
A - 2 [ 1  + ~,,(r)2]l/Z r,, l ~ [ l + O , ( r ) 2 ] , / Z d  r (4.21) 

In view of (4.2) and (4.3), the canonical scale s and the speed measure dm 
are given by 

s(r) = [1 + O'(u)2] ~/2 u 1 - "  du (4.22) 

f 
r 

m ( r ) = 2  [ l + ~ ' ( u ) Z ] l / 2 u ~ - ' d u  (4.23) 

so that by (4.17) 

v 2v 
s(r) _ _ r  v ,,+1, m ( r ) ,  - -  r v+n i as r -~oo  (4.24) 

v - n + l  v + n - 1  

i f v > n - 1 .  
A modification is required in the expression of the correlation ~b; the 

volume element dx in (2.2) is changed by the invariant volume element 
[det(g~)] 1/2 dr dO s . . .  dO n -  1; accordingly, d(x  + ro) n by (n/2) dm(r  + ro) in 
(2.4) and (2.5), which now are denoted by (2.4') and (2.5'). 

An argument similar to the proof of the theorem shows that integral 
(2 .5 ' )~m(s  l ( k ( t ) ) )  as t ~  oo up to a constant, so that from (4.24) 

integral (2.5') ~ const �9 t/~, v > n - 1 

where the exponent/? is given by 

~= n + v - 1  

2v 

being dependent on v. 



580 Ito et  al. 

Before closing the discussion of this example, we show how the 
parameter v is related to the radial curvature ~ ( r ) .  By an introduction of 
the variable f =  F ( r ) -  ~o [1 + 0 ' (u)  2] 1/2 du, the metric (4.20)is written in a 
standard form dF 2 ...~/(~)2 dO2 [ref. 29, (2.16)-1, where f ( r ) =  [ F - l ( r ) ]  2. By 
(2.18) of ref. 29, 

Y ( r )  = - f " ( r ) / f ( r )  

= tp'(r) O"(r)/r[1 + 0'(r)2] 2 

(v -- 1 )/v2r 2v, v > 1 

In the case that the metric depends also on 01 ..... 0 n- l ,  it will be 
possible to find lower and upper bounds in the asymptotics of integral 
(2.5') by using the comparison theorems obtained in refs. 29 and 30. 

5. D I S C U S S I O N  

As briefly mentioned in the introduction, several power laws have been 
found in different statistical mechanical situations involving general diffu- 
sion processes. We will review them in connection with the asymptotics of 
the canonical scale s and the speed measure din. 

The theorem in Section 3 shows that the asymptotic from of the 
relaxation function as t--, oo is determined by those of s(x) and m(x)  as 
x ~ oo. This intuitively means the relaxation of the dipole after a long lapse 
of time is mainly triggered by defects at a long distance from the dipole. In 
this way is determined the asymptotic behavior of expectation values of 
moments as t--* oo for diffusion processes ( discussed in refs. 19 and 20. 
With the assumption (3.1), we have for f e  L l (dm)  

E [ f ( ~ ) ] ~ t  "/(~+~)Kp(t), p>>.l (5.1) 

if ~ is recurrent32~ Here Kp(t) is a function slowly varying at oo. See ref. 22 
for transient cases. 

On the other hand, in a problem of fracture, our concern is a size 
distribution of small fractured areas, which is determined by the 
asymptotics of s(x) and re(x) as x ~ 0. In a simple model (26) it is assumed 
that the stress field is expressed by a one-dimensional diffusion process 
and that a fractured area is identified with a maximal open interval on 
which ~(x) > O. If 

s(x) ~ x ~" and m(x)  ~ x" as x ~ 0 
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then the cumulative number  N ( l )  of fractured areas whose length is greater 
than l behaves as 

N ( l ) ~ c o n s t . l  - ~ / ~ + ~  as l+0  (5.2) 

Here we can give a remark on self-similar cases (4.9). It is often 
assumed in the fractal theory that the index H has sufficient "physical" 
information. But the examples above show that this is not  necessarily true. 
In fact, the asymptotics of neither the momen t  (5.1) nor  the size distribu- 
tion (5.2) can be expressed by H alone. We find another  counterexample 
in the stretched-exponential  decay law. A m o n g  processes with index 
H =  1/2, those with 2 > 0 have a different exponent  from those with ,;~ ~< 0 
(see Example 2 in Section 4). 

Finally, the above analyses are closely related to those for the 
asymptotics  at t ~ 0 or oo of the transition probabil i ty density p( t ,  x ,  y ) ,  a 

review of  which is given by Tomisaki.  (3~) 
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